Materials and processings for stretchable bioelectronics systems
نویسندگان
چکیده
منابع مشابه
Stretchable bioelectronics for medical devices and systems
Advances in the microelectronics and telecommunications industries have driven important breakthroughs in medical technologies and health diagnostics over the past decade. However, there are fundamental gaps in size, sensing modalities and mechanical properties between the standard rigid electronics, employed in medical devices today, and the signals emitted by soft biological structures. Here,...
متن کاملThermal Release Transfer Printing for Stretchable Conformal Bioelectronics
Soft neural electrode arrays that are mechanically matched between neural tissues and electrodes offer valuable opportunities for the development of disease diagnose and brain computer interface systems. Here, a thermal release transfer printing method for fabrication of stretchable bioelectronics, such as soft neural electrode arrays, is presented. Due to the large, switchable and irreversible...
متن کاملMaterials and mechanics for stretchable electronics.
Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric...
متن کاملAdhesion between highly stretchable materials.
Recently developed high-speed ionic devices require adherent laminates of stretchable and dissimilar materials, such as gels and elastomers. Adhesion between stretchable and dissimilar materials also plays important roles in medicine, stretchable electronics, and soft robots. Here we develop a method to characterize adhesion between materials capable of large, elastic deformation. We apply the ...
متن کاملStretchable Electronics: Materials Strategies and Devices
New electronic materials have the potential to enable wearable computers, personal health monitors, wall-scale displays and other systems that are not easily achieved with established wafer based technologies. A traditional focus of this field is on the development of materials for circuits that can be formed on bendable substrates, such as sheets of plastic or steel foil. More recent efforts s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2016
ISSN: 2296-4185
DOI: 10.3389/conf.fbioe.2016.01.00814